商品销售案例
数据清洗
import pandas as pd
data = pd.read_excel('./商品销售数据.xlsx')
print(data.info())
data = data.dropna(subset=['用户 ID'])
print(data.info())
print(data[data.duplicated()])
data = data.drop_duplicates()
print(data[data.duplicated()])
print(data.describe())
data = data[(data['数量'] > 0)]
print(data.describe())
数据分析与图标展示
sales_income = mask_data_clean.groupby('月份')['销售额'].sum()
sales_income.plot(kind = 'line', figsize = (7, 7), title = '各月总销售额趋势图')
order_number = mask_data_clean.groupby('月份')['订单量'].sum()
order_number.plot(kind = 'line', figsize = (7, 7), title = '各月总订单量趋势图')
month_price = mask_data_clean.groupby('月份')['单价'].mean()
month_price.plot(kind = 'line', figsize = (7, 7), title = '各月平均单价趋势图')
month_order1 = mask_data_clean.groupby(['省', '月份'])['订单量'].sum()
month_order1_df = month_order1.unstack()
month_order1_df.plot(kind = 'line', figsize = (7, 7), title = '各月各省总订单量趋势图')
month_order2 = mask_data_clean.groupby(['月份', '省'])['订单量'].sum()
month_order2_df = month_order2.unstack()
month_order2_df.plot(kind = 'line',figsize = (7, 7), title = '各省各月总订单量趋势图')
print(month_order1)
plt.show()